Painless insulin patch may help diabetics soon
Researchers at the University of North Carolina at Chapel Hill and North Carolina State University made a synthetic patch that can secrete doses of insulin to control blood sugar levels on demand for diabetes patients.
Tests of this painless patch in small animal models of type-1 diabetes demonstrated that it could quickly respond to skyrocketing blood sugar levels and significantly lower them for 10 hours at a time. The results were published in Advanced Materials.
“This study provides a potential solution for the tough problem of rejection, which has long plagued studies on pancreatic cell transplants for diabetes,” said senior author Zhen Gu, PhD, assistant professor in the joint UNC/NC State department of biomedical engineering. “Plus it demonstrates that we can build a bridge between the physiological signals within the body and these therapeutic cells outside the body to keep glucose levels under control.”
Beta cells typically reside in the pancreas, where they act as the body’s natural insulin-producing factories. In healthy people, they produce, store, and release the hormone insulin to help process sugar that builds up in the bloodstream after a meal. But in people with diabetes, these cells are either damaged or unable to produce enough insulin to keep blood sugar levels under control.
Patients with type-1 and advanced type-2 diabetes must regularly monitor their blood sugar levels and inject themselves with varying amounts of insulin, a process that is painful and imprecise. Injecting the wrong amount of medication can lead to significant complications like blindness and limb amputations, or even more disastrous consequences such as diabetic comas and death.
Further modifications, pre-clinical tests, and eventually clinical trials in humans will all be necessary before the patch can become a viable option for patients. But for now, the researchers believe their results provide a proof of principle for an alternative approach that could be safer and less cumbersome than current treatments.
“Managing diabetes is tough for patients because they have to think about it 24 hours a day, seven days a week, for the rest of their lives,” said co-author John Buse, MD, PhD, professor of medicine at the UNC School of Medicine and director of the UNC Diabetes Care Center and the NC Translational and Clinical Sciences Institute. “These smart insulin approaches are exciting because they hold the promise of giving patients some time off with regards to their diabetes self-care. It would not be a cure but a desperately needed vacation.”